34 research outputs found

    Proteins on the edge : transitions of structure ensembles in protein unfolding and protein-protein binding

    Get PDF
    Proteins move. Their incessant fluctuations are governed by a complex interplay between thousands of atoms. Experimental structures, providing exact coordinates for every atom, hence only represent the average of a diverse ensemble of interchanging conformations. Molecular motion is often the barely understood link between structure and biological function. The present work examines two different processes that put proteins on the edge of moving from one global state to another. At the moment of transition, perturbation or, indeed, biological action, benign structure fluctuations can, it seems, turn into major forces. Chains of spectrin repeats apparently rely on structure flexibility to achieve a smooth response to external force. Single molecule atomic force microscopy experiments on this domain, in accord with simulations, showed clear traces of structure fluctuation. On the verge of disruption, thermal fluctuations decide how much extension a spectrin repeat tolerates and whether or not unfolding is blocked by intermediate non-native structures. This picture was supported by experiments and simulations on mutated repeats. The elasticity of the membrane skeleton and, for example, red blood cells, may thus to some extent depend on chaotic motions within single protein domains. Structure fluctuations also affect the process of protein-protein interaction, but the interplay of protein flexibility and recognition remains far from understood. I performed and compared molecular dynamics simulations on 17 protein complexes as well as their free components. Free interaction patches turned out more flexible than the remaining protein surface. However, contrary to common sense, binding does not generally restrict protein flexibility and conformational entropy may be lost but also gained in the process. Current models of recognition do not account for overall protein flexibility or make assumptions that are incompatible with kinetic observations. I combined the simulation data with systematic docking calculations and derived a new model for this process. Often, only subsets of the two free structure ensembles were mutually compatible. A conformer selection step may thus impede the rate of recognition. Protein fluctuations seem to be actively involved in the binding reaction and influence or even control the speed of recognition as well as the stability of the complex

    Shelling the Voronoi interface of protein-protein complexes predicts residue activity and conservation

    Get PDF
    The accurate description of protein-protein interfaces remains a challenging task. Traditional criteria, based on atomic contacts or changes in solvent accessibility, tend to over or underpredict the interface itself and cannot discriminate active from less relevant parts. A recent simulation study by Mihalek and co-authors (2007, JMB 369, 584-95) concluded that active residues tend to be `dry', that is, insulated from water fluctuations. We show that patterns of `dry' residues can, to a large extent, be predicted by a fast, parameter-free and purely geometric analysis of protein interfaces. We introduce the shelling order of Voronoi facets as a straightforward quantitative measure of an atom's depth inside an interface. We analyze the correlation between Voronoi shelling order, dryness, and conservation on a set of 54 protein-protein complexes. Residues with high shelling order tend to be dry; evolutionary conservation also correlates with dryness and shelling order but, perhaps not surprisingly, is a much less accurate predictor of either property. Voronoi shelling order thus seems a meaningful and efficient descriptor of protein interfaces. Moreover, the strong correlation with dryness suggests that water dynamics within protein interfaces may, in first approximation, be described by simple diffusion models

    Provisional BioBrick Language (PoBoL)

    Get PDF
    This BioBricks Foundation Request for Comments (BBF RFC) describes a semantic markup language for publishing and sharing information about BioBricks on the World Wide Web. This BBF RFC includes the recommendation for the minimal information expected when creating a Provisional BioBrick Language (PoBoL) description of BioBricks and for the implementation of the language using Web Ontology Language (OWL)

    The Synthetic Biology Open Language (SBOL) Version 3:Simplified Data Exchange for Bioengineering

    Get PDF
    The Synthetic Biology Open Language (SBOL) is a community-developed data standard that allows knowledge about biological designs to be captured using a machine-tractable, ontology-backed representation that is built using Semantic Web technologies. While early versions of SBOL focused only on the description of DNA-based components and their sub-components, SBOL can now be used to represent knowledge across multiple scales and throughout the entire synthetic biology workflow, from the specification of a single molecule or DNA fragment through to multicellular systems containing multiple interacting genetic circuits. The third major iteration of the SBOL standard, SBOL3, is an effort to streamline and simplify the underlying data model with a focus on real-world applications, based on experience from the deployment of SBOL in a variety of scientific and industrial settings. Here, we introduce the SBOL3 specification both in comparison to previous versions of SBOL and through practical examples of its use

    Synthetic biology open language (SBOL) version 3.0.0

    Get PDF
    Synthetic biology builds upon genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. When designing a synthetic system, synthetic biologists need to exchange information about multiple types of molecules, the intended behavior of the system, and actual experimental measurements. The Synthetic Biology Open Language (SBOL) has been developed as a standard to support the specification and exchange of biological design information in synthetic biology, following an open community process involving both wet bench scientists and dry scientific modelers and software developers, across academia, industry, and other institutions. This document describes SBOL 3.0.0, which condenses and simplifies previous versions of SBOL based on experiences in deployment across a variety of scientific and industrial settings. In particular, SBOL 3.0.0, (1) separates sequence features from part/sub-part relationships, (2) renames Component Definition/Component to Component/Sub-Component, (3) merges Component and Module classes, (4) ensures consistency between data model and ontology terms, (5) extends the means to define and reference Sub-Components, (6) refines requirements on object URIs, (7) enables graph-based serialization, (8) moves Systems Biology Ontology (SBO) for Component types, (9) makes all sequence associations explicit, (10) makes interfaces explicit, (11) generalizes Sequence Constraints into a general structural Constraint class, and (12) expands the set of allowed constraints

    Building blocks for protein interaction devices

    Get PDF
    Here, we propose a framework for the design of synthetic protein networks from modular proteinā€“protein or proteinā€“peptide interactions and provide a starter toolkit of protein building blocks. Our proof of concept experiments outline a general work flow for partā€“based protein systems engineering. We streamlined the iterative BioBrick cloning protocol and assembled 25 synthetic multidomain proteins each from seven standardized DNA fragments. A systematic screen revealed two main factors controlling protein expression in Escherichia coli: obstruction of translation initiation by mRNA secondary structure or toxicity of individual domains. Eventually, 13 proteins were purified for further characterization. Starting from well-established biotechnological tools, two generalā€“purpose interaction input and two readout devices were built and characterized in vitro. Constitutive interaction input was achieved with a pair of synthetic leucine zippers. The second interaction was drug-controlled utilizing the rapamycin-induced binding of FRB(T2098L) to FKBP12. The interaction kinetics of both devices were analyzed by surface plasmon resonance. Readout was based on Fƶrster resonance energy transfer between fluorescent proteins and was quantified for various combinations of input and output devices. Our results demonstrate the feasibility of parts-based protein synthetic biology. Additionally, we identify future challenges and limitations of modular design along with approaches to address them

    Strategies for protein synthetic biology

    Get PDF
    Proteins are the most versatile among the various biological building blocks and a mature field of protein engineering has lead to many industrial and biomedical applications. But the strength of proteinsā€”their versatility, dynamics and interactionsā€”also complicates and hinders systems engineering. Therefore, the design of more sophisticated, multi-component protein systems appears to lag behind, in particular, when compared to the engineering of gene regulatory networks. Yet, synthetic biologists have started to tinker with the information flow through natural signaling networks or integrated protein switches. A successful strategy common to most of these experiments is their focus on modular interactions between protein domains or domains and peptide motifs. Such modular interaction swapping has rewired signaling in yeast, put mammalian cell morphology under the control of light, or increased the flux through a synthetic metabolic pathway. Based on this experience, we outline an engineering framework for the connection of reusable protein interaction devices into self-sufficient circuits. Such a framework should help to ā€˜refactureā€™ protein complexity into well-defined exchangeable devices for predictive engineering. We review the foundations and initial success stories of protein synthetic biology and discuss the challenges and promises on the way from protein- to protein systems design

    Synthetic Biology Open Language (SBOL) Version 1.1.0

    Get PDF
    In this BioBricks Foundation Request for Comments (BBF RFC), we specify the Synthetic Biology Open Language (SBOL) Version 1.1.0 to enable the electronic exchange of information describing DNA components used in synthetic biology. We define: 1. the vocabulary, a set of preferred terms and 2. the core data model, a common computational representation

    A Biobrick Library for Cloning Custom Eukaryotic Plasmids

    Get PDF
    Researchers often require customised variations of plasmids that are not commercially available. Here we demonstrate the applicability and versatility of standard synthetic biological parts (biobricks) to build custom plasmids. For this purpose we have built a collection of 52 parts that include multiple cloning sites (MCS) and common protein tags, protein reporters and selection markers, amongst others. Importantly, most of the parts are designed in a format to allow fusions that maintain the reading frame. We illustrate the collection by building several model contructs, including concatemers of protein binding-site motifs, and a variety of plasmids for eukaryotic stable cloning and chromosomal insertion. For example, in 3 biobrick iterations, we make a cerulean-reporter plasmid for cloning fluorescent protein fusions. Furthermore, we use the collection to implement a recombinase-mediated DNA insertion (RMDI), allowing chromosomal site-directed exchange of genes. By making one recipient stable cell line, many standardised cell lines can subsequently be generated, by fluorescent fusion-gene exchange. We propose that this biobrick collection may be distributed peer-to-peer as a stand-alone library, in addition to its distribution through the Registry of Standard Biological Parts (http://partsregistry.org/)
    corecore